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A study of the conditions is given, the fulfilment of which will secure 
a motion of rockets along curvilinear trajectories which is extremal in 
time and expenditure of mass. 

The rocket is assumed to be an ideally controlled body, i.e. it may 
occupy instantaneously the necessary angular orientation in space, 

rotating about its longitudinal or transverse axes which pass through its 
center of gravity. This assumption permits a formulation of the problem, 
based only on the force equations of motion, assuming the moment equa- 
tions always to be satisfied. 

The motion is considered for an active segment of a trajectory, i.e. 
the mass of the rocket is assumed to vary in time. 

Within the framework of the indicated hypotheses, the variational 
problem is formulated, regarding the determination of the characteristics 
of extreme manoeuvres [turns. rotations 1 in time of rockets by given 
angles, for given initial and final velocities of motion, initial and 

final weight of rockets. The solution of the problem is sought for Plane 

motions in horizontal and vertical planes separately, under the assumP- 
tion of absence of the influence of aerodynamic forces. 

1. If the trajectory of the motion of a rocket, executing a controlled 

manoeuvre, is strictly in the horizontal pIane, then, projecting the 

forces on the tangential and normal directions (Fig. 11, we have the two 
basic equations 

rnd$z Tcosa (1-l) 

mV~=I/T2sinZa- (w)” (I.21 
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Here I is the thrust of the rocket engine, a is the angle of attack 

(the angle between the longitudinal axis of the body and the tangent to 

the trajectory), y is the angle of rotation of the trajectory, measured 

from the initial position. Assuming the mass a of the rocket to vary, we 
will write the equation of change of mass in the form 

dm --= 
dt Tq 

where q is the expenditure of mass per set per 

(1.3) 

unit thrust. 

FIG. 1. 

Equations (1. l)- (1.3) contain six variable quantities: I, T, t, a, 

yt v. 

We obtain from (1.1) and (1.31 

*dV cos a 
-*m=- P 

Introducing, as usual, the variable 4 = q- ’ log I, we obtain 

dV 
*+ cosa=O 

Next, we substitute in (1.2) for the variables 

and (1.4): 

(1.4) 

T anda from (1.3) 

or 

(mV)z (2)” = -$-($y [ I- ($-)1] - (mg)” 

(%)‘[($!g-vqy] =g2 
(1.5) 

Equation (1.5) allows us, by taking the quantity y as basic independ- 
ent variable, to obtain the expression for the time of the manoeuvre: 

yk 

T=*$ s F (V, V’, $1 dy (F = 1/y’2-V2-V’2 ) (I.61 
YO 
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where primes denote total derivatives of the ~0~ functions with 

respect to y. l’he plus sign corresponds to motion for which the angle of 

rotation increasea monotonically with time, the minus sign to motion for 

which it decreases. Since the change of mass of the rocket in accordance 

with the material balance equation (1.3) is related simply to the thrust, 

and the velocity of motion along the trajectory is connected with the 

angle of attack (1.4), then simultaneous determination of the extremal 

dependence between the velocity and the mass of a rocket will lead to 

the law of change of the thrust and the angle of attack during the 
manoeuvre. Thus, the determination of the necessary conditions securing 

motion of rockets along curvilinear trajectories, extremal in time, is 

reduced to the construction of the Euler equation for the function F(V, 
v’j $9, and the problem of the determination of the time of the 
mauoeuvre is reduced to finding the extremtan of the functional (1.6) for 

the usual boundary conditions for the functions V and q3, i.e. 

V = V,, y = yo, for -=r = To, v= b-k, (p” Tk for r = Tk 

2. A necessary condition for the existence of an extremum of the func- 
tional (1.6) is the fulfilment of the Euler equation for the function F: 

Substituting the expression for the derivatives of F into (2. I), we 
obtain two second-order equations which, after some manipulations, may 

be reduced to the form 

q’” _ VV’ f V’V,” 
(DI- vz+ V’” ’ %- -v“-v _- 

P V’ 
(2.2) 

‘Ihe solutions of these equations will now be found. 

Comparing the right-hand sides of bations (2.2) we obtain the 

differential equation 

V”T/-22c/‘~-1/2=0 (2.3) 

Lowering its order by a suitable substitution of variables and inte- 

grating the resulting linear equation, one obtains a first integral in 

the form 

VP= i V&%+,V~- 1 GW 

and, consequently, also the final dependence of the velocity of flight 
on the angle of rotation of the trajectory 
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Since in the horizontal plane all initial values y,, are equivalent, one 

may, including y in y*, assume Ay = y - y. The family of extremal 

curves V/V, = f(y) is obtained in the $0, 

V 1 
I/‘,= c~cos(~-~*) 

(2.6) 

It depends on the two parameters C and y*, the values of which are de- 

termined by the given boundary conditions VO and Vk. In the curves of 

Fig. 2 depicting the change of the relative velocity, one of the para- 

meters (y*) has already been excluded by use of the condition V/V, = 1 

for y = yO. ‘lhus, for a given value of the relative final velocity one 

has still to determine the second parameter C,. ‘lhe quantity C, is 

readily determined for given values of Ay and Vk/VO, the relative value 
of the final velocity (Fig. 2). 

FIG. 2. 

Using the above dependence V/V,, = f(y, C,), we will determine by in- 

tegration of one of the equations (2.2) the change of mass or weight of 

the rocket during the manoeuvre: 

where the weight function 

(2.8) 

shown in Fig. 3, is determined by the condition G/GO = 1 for y = yO. The 

second constant C, is obtained from the second boundary condition of the 

value of the final weight at the end of the manoeuvre. 

‘lhe time of the completion of the extremal manoeuvre through a given 
angle is obtained by substitution of the relations (2.6) and (2.7) into 
the functional 

T=~I/c2~-cc12g(-& ,cl) (2.9) 
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FIG. 3. 

3. We will consider next the curvilinear motion of a rocket in a 
vertical plane. 'Ihe basic equations in terms of the projections on the 
tangential and normal directions to the flight trajectory, together with 
the equation of mass balance, have the form 

dV 
rn dt =Tcosa--?ngsing, mV$=Tsina-qcosg, -f= Tq (3.1) 

We will transform as we did in Section 1. Squaring the equations 
(3.1), adding them and collecting terms containing the same powers of 
&/dt, we obtain the quadratic of three terms 

the solution of which, for dO/dt, after removal of irrationality in the 
denominator, permits the writing-down of the functional for the time of 
manoeuvre in the following form: 

Ok 

z=+\ H(V,V',$,e)de (3.2) 

where 00 

H=~cOs~+I/'sin8)~~(Vc0se+V'sine)2+[(pr2_~2_~21 

As has been shown in Section 1, the expression (3.2) is the principal 
formulation of the same variational problem for trajectories of curvi- 
linear motion, only that now they are in the vertical plane. The struc- 
ture of the function H, in comparison with F, is complicated by the pre- 
sence of the trigonometric function of the independent variable. At the 
ssme time, the three terms +'? - p - V2 of the function F are also 
present. This indicates beforehand that the final results will contain 
the solution which applied for the consideration of the horizontal 
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motions. lhus, eliminating the variables V and q5 from the Euler equation 
for the function H, we obtain an identity into which enters the left- 
hand side of (2.3), determining the extremal law of change of the velo- 
city for an angle of rotation in the horizontal plane. Consequently, the 
solutions of this equation, satisfying the Euler equation, also in the 
given case single out the particular class of extremal relations V= f(O) 
which, by analogy with (2.6), may be written in the form 

V 1 
v,= C,cos@-0.) (3.3) 

where the quantity 6 *, as before y*, contains the initial angle of rota- 
tion 8, which must be kept in mind when determining the parameter 8 * 
from the conditions V/V, = 1 for 8 = 8,. In addition, since the ex- 
pression for the function H again does not explicitly contain the vari- 
able 4, the Euler equations will have the form (2.1). The first of these, 
after evaluation of the derivatives of H, gives the first integral 

cp'=C,(Vsin0-_cosO) (3.4) 

Substituting (3.3) in (3.4) and integrating with respect to the angle 
of rotation, we find the change of mass or weight of the rocket: 

where the weight function is 

g(e, e., e*. cd = sy [t,(6 -q - ta (6, - e*)] 

(3.5) 

(3.6) 

The time of completion of the extremal manoeuvre by the angle AtI = 

‘k - ‘0 may be determined from the formula 

5 = : (COS 8’ + sin 0’ ~C,2-l) gte, e,, e., Cl) (3.7) 

lhus, by the subsequent determination of the constants C, and C2 or 
C, and C, from the four boundary conditions V,, Vk, and G , G, one may 
produce, in correspondence with any arbitrary trajectory lying in one t 
of the planes under consideration), the extremal trajectory with such 
boundary conditions. Cimqleting the coaqutations, it is easily verified 
that the extremal dependences for the angles of attack and controlled 
thrust realize a maximum of the functionals (1.6) and (3.2), i.e. they 
single out the trajectories with maximum duration of flight. 

4. We will now state a most general feature characterizing a given 
class of extremal motions. 

The ratio of thrust to weight of rockets during the process of motion 
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along extremal trajectories is constant. 

‘Ihis result is general for motions in horizontal and vertical planes. 
It may be deduced by substituting the extremal laws (2.7) and (2.9) or 

(3.3) and (3.4), taken in differential form, in the original equations 
of change of mass (1.3). 

For motion in horizontal planes 

g-L-‘- ldfJJdT= --a 
g dy dt Vo~C&--C~2 

= const 
w 

(4.1) 

For motion in vertical planes 
(4.2) 

‘Ibe condition T, = const characterizes in the given problem a class 
of motions of bodies of variable mass, when the acting reactions change 
proportionally to the change of mass of the body. Thus, the prograsnning 
of the thrust would also be connkcted with the change of the weight of 
the rocket. ‘lbe trajectory of motion and all its characteristics for 
fulfilment of this condition remain the same as for the motion of a body 
of constant mass with constant reaction. ‘lhe angular orientation of the 
rockets in space for motion along extremal trajectories does not change: 

da da 

-=%= d-l 
-1 

For motion in vertical planes this feature exactly characterizes the 
law of change of the angle of attack; for motion in horizontal planes 
the sign of the approximate equality is explained by the disposition of 

the angles a and y in different planes. 

‘Ibe invariability of the angular orientation of rockets during motion 
along extremal trajectories follows from the law of change of the angle 
of attack in terms of the angle of rotation 8 or y. We will reset the 
first equations (3.1) in the form 

T“cosa- 
1 d0 

T”sina-cosO=gVX (4.4) 

Using the extremal laws 

d0 - gc1 COG (0 - 0.) 

~5 = {cos Q* _+ sin 0” 1/Ct%3} ’ 
v_ * 

c1 cos (9 - 0.) 

we obtain from (3.3) 

(T” cos a - sin 0):! +(T”sina--cos6) - ,, __ 2 - lpos 8’ -L sin O* 1/CS2 - l}-’ 
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or 

1+To2- (cos fY * sin B’ )r/CS” - 1 }-2 = 2T” sin (a. -j- 8) (4.5) 

Since for 

that (a + 01 

rotion along the extremal To= const, it follows from (4.5) 
= const or da/d6 = -1. 

of motions, extremal in time in horizontal planes we obtain 
tr~sfo~ations the following link between the angle of 

For study 

by analogous 
attack and the angle of rotation: 

cosa = 
Jci==T 

sin(r-+f*) or $= - 
.v’TUZ sin2 a - 1 

T” T” sin a (4.6) 

It is seen from (4.61 that for large values of To, practically for 
To> 4, the quantity dakdy = -1.0. Since the angle of attack is between 
the directions of the lon~tud~al axis of the rocket and of the tangent 
to the trajectory, then for a change of the angle of rotation there 
follows a simultaneous change of the angle of attack, so that an increase 
of the angle of rotation leads to a decrease of the angle of attack by 
the same amount. Consequently, fulfilment of the condition h/de= -1 
corresponds to preservation of the angular orientation of the rocket in 
space, constant with respect to a fixed observer. 'Ihe extremals found 
for the time of motion secure sinrultaneously minimal expenditure of fuel. 

We will solve the original differential equation (I.51 for the deri- 

vative d$/dy and form a new functional, expressing the change of mass 
or weight of the rocket for rotation by a given angle Ay = yk - y,,, It 
follows from (1.5) that 

since q5 = l/q log nt, +k - t&, = l/q log Gk/Go, one has 

(4.7) 

Thus, the problem of finding the conditions guaranteeing the least 
consumption of fuel for a curvilinear manoeuvre of a rocket by a given 
angle leads to the determination of the extremes of the functional (4.7). 
It is readily verified that the extremal rules for the change of velo- 
city and mass with the angle of rotation and consequently with angles of 
attack and thrust are found to be the same as in the case of the problem 
of extremum time of motion. 



Icr.A. Gorclov 

BIBLIOGRAPHY 

1. Okhotsisskii, D. E., K teorii dvizheniia raket (On the theory of the 

motion of rockets). PMM Vol. 10. No. 2, 1946. 

Translated by J.R.Y.R. 


